FYSC - (0L

(NASA~CE=-175705" A& STUDY UF STHUCTUEAL N85-26848
CONCHPTS FOR ULTEALIGHTWEISHT SPACRBCRAFT
Final Refport (Astic Researchk Corp.) 90 p

HC AvS/HZ AJY CSCL 22B Unclas
G3/18 21ck2

3 ) - T

rFud TR

ASThY

RESEARCH
CORPOCRATION



FINAL REPORT

A STUDY OF STRUCTURAL CONCEPTS
FOR ULTRALIGHTWEIGHT SPACECRAFT

by
Richard K. Miller,
Karl Knepp
Sohn M. Hedgepeth

ARC-TN-1127
16 April 1984

Prepared for
Je: Propulsion Laborztory
uruer Contract No. 956386

This rc ort was prepared for the Jet Propulsion laboratory,
Caiifermia  Institute of Technology, spcnscred by the
Naiiona! Aeronautics and Space Administration.

Prepared by

Astro Research Corporation
6390 Cindy Lane
Carpin:iaria, California 93013



SECTION 1:

SECTION 2:

SECTiON 3:

SECTION 4:

TABLE OF CONTENTS

INTRODUCTION ..ccccececanoasnecsaccananscnssassccnsonanns aeees 1-1

DESIGN OF A SPINNING REFLEC.YOR SPACECRAFT ....cceceescecssesss 2-1

2.7

2.8

Design of Membrane Reflector ........... esccsscssssansses 2-1
Design of Outer Rim Mass ....cecvvcenccnnans seesssassecss 2-8
Design Of Front Stays ..cceeeceetccatonccascesascassosnas 2-9
Design of Back StaysS ..eceeccancncaccenas S U
Design of Inflated Cylindrical Center Column ............2-11
Design of Truss Center COlUMN ...ciesscccnncacanconscces .2-15
2.6.1 Design of a Truss Column Including

Effects of Initial Imperfections ......:cc00000...2-18
2.6.2 Design of a Perfect Truss Column ....... cessesssesl—2]l
2.6.3 Design of a Mininum Weight, Perfect

Truss COlUMN ,..cccveessccvccccssonnssvsasanccncssel—23
Effects of an Attitude Control System
on Column DeSign .c.c.icieeeeciecccosossassascanssnuncssssseel—26
Satellite Mass Moment of Inertia Ratios ......cveeceeeeee2-30

DESIGN OF A TRUSS-SUPPORTED PARABOLOIDAL
REFLECTOR SPACECRAFT ...... P 10 §

3.1

3.6

MASS
4.1

Design of a Deep Truss Paraboloidal Reflector ........... 3-1
3.1.1 Slenderness Requirements on Truss Members ........ 3-5

3.1.2 Requirement 1 - Horizontal Testing ..... ceseccssee 35
3.1.3 Requirement 2 - Vertical Testing .......... ceesses 3-7
3.1.4 Requirement 3 - Fabrication Tolerances ......... .o 3-7
53.1.5 Requirement 4 - Built-In Loads Due to

Member Length ErrOorsS ...ceccesscccenscscccvssssanecs 3—7
3.1.6 Reguirement 5 - Member Vibration Frequencies ..... 3-8
Design of a Geodesic Dome Paraboloidal Reflector ........ 3-8
Design of a Ring Stiffener for the
Geodesic Dome Reflector ....c.veeecesncceccssscnssnassnssre3—10
Parametric Mass Relations for the Tetrahedral Truss
and Geodesic Dome Support Structures ....eesveeeeescescaec3-14
Design of a Tripod Support Structure for the
Paraboloidal Reflector Feed ......criececenccsccccsoanee-a3-17
Design of a Paraboloidal Tetrahedral Truss
Reflector with Inflated Struts ....ceececenccecscnseanesed=21

SUMMARY AND COMPARISON OF DESIGNS ...c.cecececcceoscasnes 4-1

Mass Summary for an Inflated Reflector Spacecraft ....... 4-1

4.1.1 Membrane ..cccccecescorecssccsesvsesasacsncncnsacases 4=7
4.1.2 Pressurant ....ic.iccseccataseccccssscccccascecanse 47
4.1.3 Deep-ArcC TENAONS .cevecrsccsssscccanssccnsorssnsese 4=8
4.1.4 Inflated RiM ....vivcnniecvencncencnonncanconnneea 4=8
4.1.5 Strengths and Weaknesses of the Design ........... 4-9

ii



TABLE OF CONTENTS (concluded)

S Summary of a Spinning Reflector Spacecraft ......... 4-9
1 Membrane ....... ctecsesesssvescsscsssacsn-ssnescasee 4-9
2 Outer Rim MasSS ....cveverccccncsscsncssannons ceees 4-9
<3 Front and Back StayS ccceceecsccacccscssssnnancessd-10
4
5

>
.
N
S F

- Y

L] L]
wWW NN DG

.

Inflated Center COlumn ....ccevvccecnrvccccncscsed-1l
Strengths and Weaknesses of the Design ......cc...4-11
s Summary for a Truss Reflector Spacecraft ...........4-12
1 Tetrahedral TruUSS ...cccecevecccacanns A AV
2 GeodesSiC DOME ..veveecsscsseascsvsscancsacsanssasssd-12
.3 Ring Stiffener ...... cesrsenssasens cseascccsannssad-l2
4
5
6

[
.

4.3

&

Mesh/Membrane ......ccccecececececacasnascsascsss-a4-13
TrIPOA .cccencscencnccscsacancsccasavssanscsssassso$-13
Strengths and Weaknesses of the Design ...........4-13

L W
L]

.
wwww
.

APPENDIX: VIBRATIONS OF A SHALLOW DOME ....cc.vectcecncoasccaceccancens .o A-1

iii



Table
Table
Table
Table
Table

Table

Table

Table
Table
Table
Table

Table

Figure

Figure

Pigure
Figure

Figure

Figure

Figure

Figqure
Figure

Figure

Figure

2-5.

2-6.

2-7.

3-1.
3-2,
3-3.
3-4.

2-7.

3-1.
3-2.
3-3.

3-4.

LIST OF TABLES AND FIGIRES

Inflated Cylindrical “enter Column Designs ........cceeveee...2-14
Imperfect Truss Column DesSigns ....ceeeeccvcesosasanscccacaassead 22
verfect Truss Column DeSigNS ...eesscessccscncasscancsassacassl=24
Minimum Weight Pe.fect Truss Column Lesigns .......ececseeeee0+2-25

Comparison of Satellite Pundamental Frequency
and Spin Rate for CMG-Controlled Spacecraft ........ ceeescncsa 2-23

Designs for Inflated Cylindrical Column in
Attitude-Controlled Spacecraft ............. R ) |

Mass Moment of Inertia for Spinning
Paraboloidal Reflector Spacecraft ...c.cecececssccscsccsssosnssl32

raraboloidal Tetrahedral Truss DeSIigNS .c..ceevecnceccvessenees 3-6
Paraboloidal Geodesic Dome DeSign3s ....cccsecsennanes veessesss3-11
Ring-Stiffener DeSigns .....ccceceeccccrcscscancsoscsansnsseeead-l’

Summary of Tripod Strength, Fiexibility, and
Mass Characteristics ...ceeeccesccccacscvessannas cesecsnas ceeaa3—22

Comparison of Structural Masses of Three raraboloidal
Reflector Spacecraft ConfiJurations ....ceeccecccccsescaccane . 4-6

Geometry of spinning paraboloidal membrane ......c.ccaecseeess 2-2

Detailed geometry of connections between major structural
commponents of spinning reflector satellite .....cceceveeveeess 2-6

Inflated cylindrical center COlUMN ...cccveavscceccansnooncesal—l2
S-3 Astromast instrument bOOM ......cveerevcessccsccnscncseess2=lb

Twelve-inch Astromast with round longerons and
dual fiberglass diagonals and battens .....ccecececscscasssesa2=l?

Counter--rotating flywheel attitude control
system for spinning reflector spacecraft .......c.c.vvveeee...2-27

Cantilevered beam-column with tip mass model for fundamental
vibration frequency of satellite in Figure 2-6 ........e0c0s..2-28

Tetrahedral truss configuration .......ccccveeeereccrcncanceess 3-2
Geodesic dome configuration ...c.ceveeveecnncconcacans cesesses 3-9

Cross-sectional view of ring stiffener and edge
Of geodesic AOME ...v.eeeencvvecenrsscsnssassnssnaneacsssaserssld—ll

Unit mass vs. mesh tension for truss support
structures, solid tube desSigns ......ee.ceeeerecsccnscnnesnoss3-18

iv



Figure 3-5.
Figure 3-6.
Figure 4-1.
Figure 4-2.,

Figure 4-3.

LIST OF TABLES AND FIGURES (concluded)

Tripod feed support Structure .....cceecvesccancasns cvecnen ceseas 3-19
Tripod column/reflector surface interface .......ccccvveeee...3-20
Gecmetry of cone-paraboloid reflector spacecraft ............. 4-2

Pressurized isotensoid strut used in segmented
compression rim of inflated cone/paraboloid reflector ........ 4-3

Detail of load path between membrane and rim attachment
points for inflated reflector configuration ........... ceseses 4-4



SECTION 1
INTRODUCTION

This report includes the results of a study conducted by Astro Research
Corporation (Astro) on structural ccncepts for ultralightweight spacecraft as a
part of Jet Propulsion Laboratory (JPL) Contract No. 956386. This work is the
continuation of studies begun under JPL Contract No., 955873 ({(Refs. 1-1 and
1-2). The objectives of these studies were to identify and evaluate concepts
for ultralightweight space structures and to assess the validity of their

potential application in advanced spacecraft,

In the earlier program, the following topics were investigated and

reported on:

Membrane wrinkling under pretensioning
Load-carrying capability of pressurized tubes
Equilibrium of a precompressed rim

Design of an irnflated reflector spacecraft

Gencral instability of a rim

0O 0 0 0 0O o

Structural analysis of a pressurized isotensoid column

In tha current study, the design approaches for a paraboloidal reflector
spacecraft have been extended to include a spin-stiffened design, including
both inflated and truss central columns, and to include both deep truss and
rim-stiffened geodesic designs. The spinning spacecraft analysis .s included
in Section 2. The two truss designs ara covered in Section 3 and the

Appendix.

Section 4 of this report compares the performance of four different
approaches to the structural design of a paraboloidal reflector spacecraft.
The spinning and inflated configurations result in very low total masses and
some concerns about their performance due to unresolvea guest.ons about

dynamic stability and lifetimes, respectively.
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SECTIOR 2
DESIGN OF A SPINNING REFLECTOR SPACECRAFT

Reported in this section are the design procedures used to develop the
dimensions and masses of spacecraft structural components for a spinning
paraboloidal membrane reflector in a hoop-and-column configuration. A primary
structural member in this configuration is the compression-carrying central
column. Both inflated cylindrical and truss column designs are presented in
some detail, but the inflated column is found to be vastly superior on the

basis of a total mass criterion.

2.1 DESIGN OF MEMBRANE REFLECTOR

Consider a spinning paraboloidal membrane with coordinates shown in

Figure 2-1. As shown in Reference 2-1, the meridional edge tension N¢ and

circumferential edge tension Ne may be expressed as

4fP V1 + (1/16f2)(2r/D)2

N¢ = (2:/9)2 (2-1)
Ny = m"w’D? (_2_:)2 _ afp 1 2-2)
4 D D 2 // 2 2
(2r/D) 1+ (1/16£7) (2r/D)
where
P = total axial compression force in central column (N)
r = radial coordinate of point on membrane surface (m)
F = focal length of paraboloid (m)
m" = mass per unit area of membrane material (kg/mz)
w = circular spin rate (rad/s)
D = diameter of membrane rim (m)
£ = F/D



(F

"

focal length)

Figure 2-1.

Geometry of spinning paraboloidal membrane.
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Note from Egs. (2-1) and (2-2) that as (2r/D)»0, we find that Ndnn and
Ng**». Hence, the central portion of the membrane contains stress
singularities and must be removed. The remaining membrane forms a useable
reflector surface in the form of a paraboloidal annulus. Let the inner radius
ro be chosen (arbitrarily) as

r, = 0.4 (g) ~3)

This choice of I, leaves approximately 84 percent of the potential membrarc
surface for use as a reflector while eliminating the stress singularities in

the center.

Note also from Eqg. (2-1) that for a membrane of fixed geometry the
amplitude of the meridional edge tension is determined by P, and that the
maximum value of q¢ occurs at Ly. Hence, setting (arbitrarily) this maximum
N at

o

N¢(r = ro) = 5 N/m (2-4)

we can determine the corresponding column compression load P by

F = mD(5 N/m) (2-5)

25 £/1 + (1/10f)2

Specifically, for three different values of f, Eq. (2-5) yields the results

1.23 N/m; f

1/2

= ¢ 0.625 N/m; £=1 (2-¢)

ol
[

0.315 N/m; £f =2

As revealed by Eg. (2-1), N, decreases monotonically as r is increased

¢
until the minimum value is attained at the outer rim, r = D/2. Using the
values for column compression P given in Eq. (2-6), we find the corresponding

values of the minimum N. are

¢



0.882 N/m; £

1/2
) = 6.821 N/m; £f=1 {(2-7)

0.804 N/m; £=2

Returning to Eq. (2-2), we see that for a membrane of tixed gecmetry and
with fixed column compression P, the amplitude of the circumferentia: edge
tension Ne is determined by the spin rate w. Furthermore, N6 increases with r
to attain a maximum value at the outer rim, r = D/2. The minimum value which
occurs at the inner rim (r = ro) may be either positive (tensile) or negative
(compressive) depending on the size of . Since compressive stresses cannot

develop in a membrane surface, we arbitrarily set the minimum value of N6 at

N (r = ro) = 0.85 N/m (2-8)

The corresponding spin rate y is determined by

1)1/2
- 125 [0as wam +__M&EJ1 (2-5)
{m"p 1+ (1/10f)
Using a membrane unit mass of
" 2
m" = 4 gm/m (2-10;

cunsistent with a membrane material of Kapton polymer filin of thickness

3

2 x 10_6 m, and mass density of 2 x 10 kg/m3 (as used in Ref. 2-2), we find

specific values of ( for different values of £ are

188 m/s; £f=1/2

wD 1en m/s; £f=1 (2-11)

191 m/s; f=2

From Eq. (2-"), it is seen that Ne iacreases monotonically from r = Iy to

attain its maximum value at r = D/2, Using the values for P, m", and y given

in Egs. (2-6), (2-10), and (2-11), we obtain the following specific values for

Nemax

2-4



34.6 N/m;

L]
[}
[
~
L)

) = 35.3 N/m; £f=1 (2-12;

35.5 N/m; f

W
[ S

The surface area of the parabolcidal annulus is found from calculus to be

<Area )
m™2/4

parab. annulus

mn
1]

0.899; 1/2

0.855; f=1 {2-13)

0.844; £f=2

Multiplying the surface area in Egq. (2-13) by the unit mass in Eq. (2-10), we

find the total mass of the paraboloidal annulus is

3.60 g/n%; £ = 1/2
(§3§§—) = {3.429/m% f£=1 (2-14)
m/4) _ "
parab. annulus 3.38 g/m; £ =2

Since the inner edge of the paraboloidal annulus is not stresc free, an
additional lcad-carrying structural element is required inside the inner rim.
To enhance tne reflective potential of the entire surface, consider a conical
membrane whose geometry is chosen as a "best-fit"” to th2 missing paraboloid in

the inner region r < In order to reduce the stresses within the conical

0°
membrane, additional : » port is provided by stay tapes which attach at the
cone-t ‘raboloid interface and run behind the cone to the end of the central

column, as shown in Figare 2-2.

Minimizing the uean~squared vertical Jeviation between the cone and

paraboloid in the region r < Ly we cbtain by calculus the optimal choice nf A

A1 .
D T %00 ¢ (2-15)

Using this value for A, we find by calculus the surface area of the interior

cone is

2-5



Front stays

Central

column—\\

Rim mass

Paraboloidal
annulus

Back stays

Figure 2-2. Detaliled geometry of connections between major
structural components of spinning reflector
satellite. 1044



0.161; f =1/2

— 2
Area _ 4 1 - . - _
( ) = 3 //{ + (IE"?) 0.160; f =1 (2-16)

2
wm-/4/. .
sargrior 0.160; £ = 2

Muitiplying the surface area in Zq. (2-16) by tne unit mass in Eq. (2-10), we

obtain the total mass of the interior cone

0.644 g/m’; £ = 1/2

/

Mass )
nD2/4

“interior
cone

(2-17)

1]
-]

0.640 g/m“; f

0.640 o/m%; £ = 2

Combining the masses of the paraboloidal annulus and interior cone, we

obtain the total membrane mass

4.24 g/n%; £ = 1/2
<§5§§—) = Ja06 gm® f£=1 (2-18)
mD"/4 total membrane 4.02 g/mz_ £ =2

The interior conical membrane is subjected to substantial edge tension,
and, in addition, it is spinning and is subjected to centrifugal loads due to
its own inertia. Ignoring the centrifugal loads in comparison with the

meridional edge tension, we can see that

N, (r) r
NQ - 0 (2-19)
¢(r0) r

in the ron.. The circumferential stress N, is negligible in this case. Note

6
that, again, we observe a stress singularity at r = 0. Thus, it is again
necessary to define another inner radius r, and remove the membrane in the

region r < L. A conical annulus is formed thereby.

In order to define Lo let N¢(r0) = 2.5 N/m in the cone (the other 2.5

N/m to be caried by the back stays). Then solving from Eq. (2-19) for that

radius rc for which N (rc) = 35 N/m, we ohtain

¢

2-7



r = ETY (2-20)

This particular choice of r, balances the maximua edge tension in the conical

annulus with that in the paraboloidal annulus.

2.2 DBESIGN OF OUTER RIM MASS

The radial component of the meridional edge tension at the outer rim r =
D/:c of the paraboloidal membrane must be reacted by some structural member
external to the membrane. A convenient means of providing such reaction in
this spinning case is through the ceatrifugal force induced by an added rim

mass.

Consider a uniform rim mass with lineal mass density m as shown in Figure
2-2. The radial equation of motion of the rim mass (assuming negligible hoop-
tension effects in the rim mass) is
~ 2 .
My = Tcosa+ N, cos B (2-21)

¢

N IO

where T is the tension in the front stays per unit circumferential 1length
around the rim, and g and B are the angles shown in Pigure 2-2. The term N
is the meridional edge tension in the paraboloidal annulus at r = D/2. From

geometry, it can be shown that

a = tan} (Zf - %E) (2-22)

™
"

-1 {1
tan (4f) (2-23)
The Z-direction equation of motion of the rim mass is

T sing = N¢ sin B (2-24)

2-8



Substituting the values of N¢ and w from Egs. (2-7) and (2-11), respectively,
we can obtain by using Egs. (2-21) and (2-24) the required t-nsion T in the

front stays as well as the regquired rim mass m. The results are

0.657 X/m; f

1/2
T = (0.226 H/m; £f=1 (2-25)

0.103 N/m; £f=2

and 2
0.298 g/n%; £ = 1/2
E‘;;i- = {0.200 g/m%; £=1 (2-26)
™"/4 rim mass I 2
0.181 g/m%; £ = 2

2.3 DESIGN OF FRONT STAYS

The required tension in the front stays is given in Eq. (2-25). Assuming
a stay material of Kevlar 49 with working stress 0 = 6.9 x 108 N/m2 and mass
density p = 1380 kg/m3, and assuming a uniform stay distribution of 90 stays
around the circumference of the reflector rim, we performed an aralysis cf
stay resonant frequencies and tension changes due to spin~ing. It was tound
that the stay resonant frequencies are about 5 to 20 t. :s higher than the
spin rate w. Furthermore, it was found that the change ian stay tension
induced by the spin of the satellite was less than 1 percent in all cases.
Hence, it 1is concluded that neither of these effects has a significant

influence on the design,

The total mass of front stay tapes is independent of the number of tapes

and is given by

0.00329 g/m2: £

=1/2
Ea_zs_) - F&_ = 0.00192 g/mz; £f=1 (2-27)
cos Q
™"/4 front stays 2
0.00167 g/m“; £ = 2

2-9



2.4 DESIGH OF BACK STAYS

Th. required tension in the back stays is 2.5 N/m, as previously
discussed. Since these stays are much shorter and more heavily loaded taan the
front stays, the potential problems induced by satellite spia (e.qg., forced
resonance of stay tapes and change in static tension) are even less likely to
be important for the back stays than for the front. Hence, no additional

consideration is required.

The mass of the back stays is given by

H + E.)
Mass = 4p'1‘( D (2-28)
1rD2/4 g cos Yy
back stays

where Y, H, and £ are shown in Figure 2-2. From geometry, it can be shcwn

that

74.5 degrees; f 1/2
Y = (82.2 degrees; f=1 (2-29)

86.1 degrees; £f =2

and

0.0554; £ =1/2

(“ + 2) = {0.9276; £ =1 (z-30)

0.0138; £ =2

Assuming “he back stays are made of Kevlar 49 with the same properties as

those .sed in the design of the front stays we obtain

0.00417 g/m?; £

= 1/2
M
(_a;s ) = {0.00404 g/n%; £ =1 (2-31)
mD%/4
back stays 0.00401 g/m%; £ = 2

2-10



2.5 DESIGN OF INFLATED CYLINDRICAL CENTER COLUMN

One of the two structural concepts for carrying the compression load in
the center column is based on the use of an inflated cylindrical tube. The
tube is made of fiber-reinforced mylar with fi.ed gauge thickness of t = 2,45
x 10-6 m (0.1 mil), and the internal pressure is adjusted to carry the
compressive load without benefit of compressive stress in the tube walls.
Buckling strength is provided by bending stiffness in the elastic tube walls.

A schematic diagram of this column is shown in Figure 2-3.

Because the column must spin with the membrane reflector, column failure
may occur by whirl instability as well as buckling. To account for this fact,

the design criteria for the column are based on the formula

2
WML
(F.5.) x (P + ) ) = Pcr (2-32)
where
3.3
_ TErt _
Pcr = ——;E—— {2~-33)

is the Euler buckling load, and where

Mo
M = 2TrtLO + P (—) L (2-34)
R,T

is the total mass of the column (exclusive of the end caps). The notation

used here is as follows:.

F.S. = factor of safety

P = compressive end load

w = satellite spin rate

E = modulus of elasticity of the tube wall
t = wall thickness

r = tube radius

L = column length

p = mass density of the tube wall

2-11
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Inflated cylindrical center column,

Figqure 2-3.
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M = molecular weight of pressurant
= universal gas constant

= pressurant temperature

Local buckling of the tube wall is prevented by choosing the pressure to be

p = —— (2-35)

Analysis of the whirl instability of the column yields the following result

for the critical spin rate W of the column

P_L
cr

M

0o = 3
cr L

(2-36)
From a design point of view, Egs. (2-32) through (2-34) may b: regarded as an
equivalent to a single cubic equation which determines the required column
radius r for given gauge thickness t and other parameters. Shown in Table 2-1
are the results of this design procedure based on the column loads presented
in Egs. (2-6) and spin rates presented in Eg. (2-11). The results are based

on a factor of safety of two aad fiber-reinforced mylar properties of

28 x 10° N/m? (2-37)

tx
"

2080 kg/m>

©
L}

The pressurant is assumed to be N, at 300 K, for which

2

Mo
ROT

= 1.123 x 10™° kg/N-m (2-38)

In reviewing the results presented in Table 2-1, it is observed that
large aperture (small F/D) designs are governed primarily by EBEuler buckling,
while small aperture (large F/D) designs are giverned primarily by whirl
instability. The relative column diameter and wunit mass increase
substantially with increasing (F/D), while the internal pressure

simultaneously decreases. In general, the column appears tc0 be quite

2-13
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lightweight in comparison with the membrane reflector so that a relatively
balanced design is possible. Note, however, that the column radius becomes
quite large for the F/D = 2 case so that the condition of Eq. (2-20) is
violat.d. It would be necessary in this case to enlarge the inner radius r in
the conical membrane to accommodate the large column which results from Table
2-1. The amount of enlargement required is not excessive, though, and the
effect on the tension N¢ in the membrane would be beneficial in that it would

be reduced from the nominal value of 35 N/m.

In closing, it should be noted that attempts were made to create
alternative center column designs based on inflated isotensoid column
technology (Ref., 2-2). These attempts were not considered successful in that
the resulting designs were not capable (with reasonable slenderness) of

satisfying the whirl stability criterion.

2.6 DESIGN OF TRUSS CENTER COLUMN

An alternative structural concept for the center column is based on the
truss configuration. The truss is considered to be a coilable lattice column
of typical Astromast design (Ref., 2-3). The three continuous longerons are
made of a graphite-epoxy composite material, and the cross section is assumed
to have the shape of an equilateral triangle. Shear stiffness is provided by
diagonal tension cords, and stability of cross-sectional shape is provided by
three equal-length battens which attach to the longerons in the plane of the

cross section at periodic intervals, or bays, as shown in Figures 2~4 and 2-5.

Three different approaches to the design of the truss column are
presented. The first approach is the most realistic, in that both local and
overall imperfections are taken into account in an accurate manner, The
resulting unit mass for the column is found to be unacceptably large in
comparison with the membrane reflector mass in all cases except the smallest
diameter, largest aperture configuration. As a result, two more design
Spproaches are presented in order to explore the extent to which the excessive
column mass may be due to imperfection effects (which were not considered in
the previous design of an inflated cylindrical center column). Design of a
perfect truss —olumn under the same criteria but without imperfections yielded

very little reduction in unit mass, however, indicating that the large unit
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Figure 2-«5.
12-inch Astromast with round longerons and dual
fiberglass diagonals and battens.
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mass of the truss column is not due to imperfection effects. .inally, a
minimum weight design in which Euler and local buckling loads are set equal by
relaxing a packaging constraint on 1longeron radius 1is employed, and
substantial reduction in column unit mass is obtained. However, even in this
case, the unit masses are still nearly an order of magnitude larger than those

obtained for the inflated cylindrical column design.

2.6.1 Design of a Truss Column Including Effects of Initial Imperfections

Consider an Astromast truss column with both local and overall
imperfections, as described in Reference 2-4. Let the iocal imperfection be
measured by the midspan deflection amplitude § of one bay 1 3 cof longeron,
and let tg be the radius of gyration of the cross-secti area of the

longeron. Then, the local imperfections are assumed to be

;6- = /0.1 =z 0.316 (2-39)
g9

Furthermore, 1let the overall imperfections be measured by the midspan
deflection amplitude A of the entire column, and note that the radius of
gyration Rg of the cross-sectional area of “he entire column is R//2, where R
is the radius of the column. The overall imperfection amplitide is then

regarded as dependent upon the overall column sl.nderness ratio where

R
g = T (2-40)
and L is the overall column length. 1In particular, let

A 4.72 x 10°%°%; 8 < 0.017
L. (2-41)

s 3.58 x 10082 3 3 0.017

This choice of A reflects two separate concerns, and A is chosen as the worst
case of the two considered sources. First. for 8 < 0.017, Eq. (2-41) reflects
midspan deflection due to an assumed variation of the coefficient of thermal

expansion of Aa,r = 0.1 x 10-6/1( in longeron material, combined with an assumed
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temperature change of AT = 100 K with the column oriented in a worst-case
direction. The longerons are assumeu to have length L with 5 = 0 at the
reference temperature. Then, after the temperature change AT, one longeron is
assumed to have expanded more than the other two, and the overall column
length is assumed to be the average of the final lengths of all three
longerons. The A is then calculated as the midspan deflectioan of the

resulting circular arc shcpe of the overall coiumn.

The case when 8 > 0.017 in Eq. (2-41) is based on an analysis of expected
rm8 surface deflections in a simply suppurted planar truss made of straignt
members with imperfect initial lengths. The analysis, presented in Reference
2-5, is used where it is assumed that the standard deviation of errors in
member leng.hs (o) is 107>, and (L/R) = 1.25 and (R/H) = (2/3). The
resul ‘ng rms deflection was used to identify that parabola of midspan
deflection A with the same rms value. The resulting value f A was then
multiplied by a factor of three. The result of this process is reported in

Eq. (2-41).

Column designs were then determined from the equation

x* 1
—ay - H{——-1] = C0 + Clx* (2-42)
1+ 2 1+ /ip®
K K
vwhere
P " A/R
K= gr § -0 pr e TR D) (2-43)
L ] 1-7.55x10 " LB
Pg 10 2.2 -2
x*t = R (1 -7.55 x10 " LB ) (2-44)
L
vhere
Pb = column buckling load
P!L = local buckling lnad of one bay length of column
PE = PBEuler buckling load of overall length of column
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w = satellite spin rate (radians/second)

CD,(:1 = empirical constants determined from detailed imperfection
analysis

Equation (2-42) was determined as a simplified empirical fit to the numerical-
quadrature~-determined results presented in Reference 2-6 for the effects of
combined local and overall imperfections on the buckling load of lattice
columns. The effects of satellite spin are included in the parameters x* and
A*, which reduce to static (nonspinning) values when w = 0. These spin
corrections were determined from the analysis presented in Reference 2-4 by
including an additional inertia load term in the governing nonlinear
differential equations and then redefining the effective PE and A in the Ritz
solution so as to absorb the additional spin-dependent terms.

By careful examination and curve fitting of the data presented in
Reference 2-6 for the buckling loads in the case where 6/1'g = 0.3, the

constants co and cl are assumed as

C, = 1.4 VA* + 0.14

Cl = 0.135 A* + 0.275

(2-45)

Equation (2-4*) may be used to estimate the buckling load Po of a lattice
crlumn with combined local and overall imperfections while spinning with
angular velocity w. The column is then designed by requiring

(F.5) P = Pb (2-46)

where F.S. = Factor of Safety = 2 in this design, and P is compression load in
the column.

Bquations (2-41) through (2-46) provide a set of simultaneous nonlinear
algebraic equstions for B, assuming that

r
R - 0.006 (2-47)



where r is the longeron radius. Equation (2-47) is a packaging constraint
which avoids longeron damage due to excessive strain in the stowed
configuration. It is further assumed that

R - 1.25 (2-48)
where £ is the length of one bay along the column length. Let the longeron
material be graphite/epoxy composite with

il

2

B = 1.245 x 107 N/m

3 (2-49)
P = 1520 kg/m

Presented in Table 2-2 are the resulting design parameters for a truss
column with combined local and overall imperfections. Note that the column
masses are much larger than those presented in Table 2-1 for the inflated
cylindrical column.

2.6.2 Design of a Perfect Truss Column

In this section we investigate the extent to which the excessive column
masses obtained in the preceding section for an imperfect column may have been
caused by the effects of imperfections. 1In this design, it is again assumed
that

£) = o0.006 ; (&) = 1.25 (2-50
R ° ' \R . )

However, the buckling strength of the column is determined by

Py = Minimum (P2, By) (2-51)
where
2. .2,2
w mL"/n
P* = p (1 - ———) (2-52)
E E Py
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where Pb' PB' and P” are as defined in the preceding section, and m is the
mass per unit length of the column. The effects of satellite spin rate are

included in the effective PE of Bq. (2-52), as previously discussed.

The column design is then determined from the requiremet that
(F.S.) P = Pb (2-53)

where (F.S.) = Factor of Safety = 2. Using the same material properties as
those considered in the preceding section, we obtained the column designs
presented in Table 2-3. Note that while the masses of the resulting perfect
columns are slightly smaller than those of the corresponding imperfect columns
of Table 2-2, the masses are still excessive in comparison with the inflated
columns. Note also that in every case except one the design is governed by
P*, and the excessive masses are therefore caused by the inertia effects of

E
satellite spin rate.

2.6.3 Design of a Minimum Weight, Perfect Truss Column

Presented in this section are the results of an investigation of the
effects of relieving the constraint that r/R = 0.006. Instead, designs are
determined according to the minimum weight condition that
(2-54)

PE = B

where Pﬁ is given by Eq. (2-52). In this case, r/R is regarded as an
independent variable. However, Eq. (2-54) determines r/R in terms of B, w, L,

etc. The column design condition is then
(F.S.) P = Pl (2-55)

where, again, F.S. = Pactor of Safety = 2.

Table 2-4 presents the results of this design procedure, where it is
observed that r/R<0.006 in all but one case so that the packaging requirement
is satisfied for all but one of these designs. Furthermore, a substantial
savings in total column mass is realized, especially for the shallow reflector
designs where (F/D) = 2.
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2.7 EFFECTS OF AN ATTITUDE CONTROL SYSTEM OM COLUMN DESIGN

One of the special problems associated with a spin-stiffened satellite is
that of overcoming the large angular momentum during attitude control
maneuvers. One approach to this problem is to add a large counter-rotating
flywheel to nullify the angular momentum of the reflector and obtain an
overall configuration with zero net angular momentum. The added flywheel
might naturally be positioned on the central compression column behind the

reflector, as shown in Figure 2-6.

In this configuration, the flywheel-reflector pair might behave as a pair
of control-moment gyroscopes (CMG) for efficiently providing attitude control
and maneuvers of the entire satellite. The required large flywheel could be
deployable and made in an isotensoid configuration of high strength fibers, as
described in Reference 2-7. However, the intent here is not to explore the
details of the design of such a control system, but rather tu explore the

effects such a system might have on the central compression column.

For a certain userul range of design parameters, a large flywheel control
system might have the local effect of "clamping®™ the base of the central
column as if cantilevered from a fixed point in space. The fundamental
vibration mode of the overall spacecraft in this case might resemble that of a
cantilever beam-column (representing the flexural behavior of the stiff
central column) with an added tip mass (representing the rocking bhehavior of
the spinning reflector in the rigid body mode}, as shown schematically in
Figure 2-7.

An analysis of the system shown i Figure 2-7 with parameters chosen to
fit the inflated cylindrical column designs of Section 2.5 reveal that the
combined effects of the ¢tip mass and relaxed (cantilevered) boundary
conditions lower the fundamental vibrational frequency well below the
satellite spin rate w. The results of the analysis are shown in Table 2-5.
It is thus concluded that none of the inflated column designs presented in
Section 2.5 is sufficiently stiff to avoid whirl instability in a direct way.

A single-term approximation to the fundamental frequency of the system
shown in Figure 2-7 is given by
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Bl P
3 0.2 %

0, 'J M+ 0.236 m (2-56)

Solving Eg. (2-56) for BI, replacing Wy, with the spin rate yu, and including a
safety factor, we obtain the following design requirement for the central
column

23 2
EI = (P.S.) x [3—3&— (M + 0.236 mp) + %’-] (2-57)

Considering the inflated cylindrical column with fixed gauge thickness t
described in Section 2.5, and using the same material properties and
pressurant conditions with a P.S. = 2, we used Eq. (2-57) to determine design
parameters for an inflated cylindrical center column which is consistent with
attitude control philosophy previously described. The results of this design
procedure are presented in Table 2-6. Comparing the column masses presented
in Tables 2-1 and 2-6, we can see that it is apparent that the control
approach shown in Figure 2~-6 results in an approximate three-fold increase in
the column mass.

The effects of alternative attitude control schemes were not examined.

2.8 SATELLITE MASS MOIEENT OF INERTIA RATIOS

Another of the special problems encountered in a spin-stiffened satellite
is that of the dynamic stability of the free flying spinning vehicle. It is
well known that a free flying spinning vehicle is stable ouly whken spinning
about the principal axis of inertia associated with the largest mass moment of
inertia. Since the subject spacecraft is intended to spin in a stable manner
about an axis through the center Jsolumn, an evaluation of the moment of
inertia about this axis Is (the spin axis) and also about an axis orthogonal

to the column but through the mass center I, (the tumble axis) was performed.

t

The spinning spacecraft iz then stable if Is is greater than It and unstable

otherwise. The results of the calculation are presented in Table 2-7.
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TABLE 2~7. MASS MOMENT OF INERTIA RATIOS FCk SPINNING
PARABOLOIDAL REFLECTOR SPACECRAFT*

(F/D) (Is/I¢)

1/2 1.74
1 0.916
2 0.167

]

*Ig = spin axis inertia
I, = tumble axis inertia

Column designs taken from Table 2-6.
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Clearly, the cases where (/D} = 1 and 2 require additional mass around
the outer rim of the reflector to provide dynamic stability of the spinning
spacecraft, No calculation of the magnitude of the required mass was
performed.
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SECTION 3

DESIGN OF A TRUSS-SUPPORTED
PARABOLOIDAL REFLECTOR SPACHCRAFT

The design procedures used to develop the dimensions and masses of
spacecraft structural components for a truss-supporved paraboloidal reflector
spacecraft are reported in this section. Results are presented for support
structures with deep truss design and also for a geodesic dome/stiff perimeter
ring configuration. A tripod truss structure is designed to support the
electronic payload located at the feed of the paraboloid in each case.

3.1 DESIGN OF A DEEP TRUSS PARABOLOIDAL REFLECTOR

Consider a deep truss in the shape of a paraboloid, as shown in Figure
3-1. The truss has nominal depth H, and the reflective surface is composed of
nominally equilateral triangular facets of length 2, as shown in the figur-2,
A reflective mesh or membrane is stretched and supported along the upper
surface of the truss, while the lower surface does not support a mesh. The
interface between the mesh and truss occurs only at the triangular lattice
nodes. Separate tendons under high tension are laced through the mesh along
l.nes parallel to the surface truss elements and attached at the nodes. The
truss members therefore must carry only axial compression and tension and can
thus be slender for lightly loaded situations. Properly located joints allow
stowage and deployment of the otherwise uncompliant structure. Fsom an
overall standpoint, the tetrahedral triss structure can be thought of as a
thick shell, the surface of which is defined by the lattice nodes. For the
equilateral triangular geometry shown, the shell is isotropic, an advantage

that does not obtain for some other truss geometries.

Let the edge tension in the mesh be isotropic with a unit value of N
Newtons per meter. Then, assuming a tenfold amplification of tension loads in
the .azndons, we obtain the induced compression in a typical truss member near
the perimeter of the truss
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Furthermore, let each truss member be a thin-walled hollow tube with wall
thickness t and designed to carry the compression load P as an Euler column
with a factor of scfety of PF.S. Then, as shown in Reference 3-1, the

resulting diameter to length ratio of the member is

1/3
- (8 F.S. p) (3-2)

a L
L S E

vwhere E is the modulus of elasticity of the tube material.

Substituting from Eq. (3-1) into Eq. (3-2), we find the truss member

slenderness ratio to be

- (ao F.S. N_)1/3

(3-3)
/3 “3 tE

d
L

The strut length £ may be determined by 1limiting the rms deviation
between the flat mesh facets and the desired paraboloidal surface to be less
than some predetermined value. Since the rms deviation decreases with £, it
is possible, at least in principle, to meet any arbitrarily demanding surface
accuracy requirement by simply reducing £ sufficiently, thereby increasing the

number of facets in the approximating mesh surface.

Let o ns be the rms deviation just described, let D be the diameter of
the reflector, and let F be the focal length of the desired paraboloid. Then,
it may be shown (Ref. 3-1, p.161) that the required strut length % for a given
allowable rms deviation is given by

A (wrms)
< = 7.87 /< (3-4)
D Dy D allow.

For the tetrahedral truss, the total mass of the truss structure is

independent of %, however. In fact, it can be shown (Ref. 3-1, p. 169) that

the structural mass per unit area of the tetrahedral truss is given by
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(3-5)

where p is the mass density cof the truss material and k is a factor to account

for the mass of the fittings.

In addition,

the sur.ace area A

of the

desired paraboloid may be related to the frontal area of the reflector as

follows:
1.06011;
A | o
(_Eg__) = {1.01547;
nD"/4
1.00390;

Assuming a graphite/epoxy material for the truss members with

E = 1.0 x 1011 N/mz;

and a fixed wall thickness of
t = 0.35 mm

also a factor of safety of
F.8. = 2

a fittings mass factor of

k = 1.5

F/D
F/D

F/D

p

1/2

1520 kg/m°

and an allowable rms surface error of

w
() e,
allow,

(3-6)

(3-7)

(3-8)

(3-9)

(3-10)

{3-11)



we may obtain the structural mass per unit area for tetrahedral truss designs
given in Table 3-1. The truss depth H used in these designs is equal to the
surface member length 2.

3.1.1 Slenderness Requirements on Truss Members

The proposed truss member designs given in Table 3-1 were evaluated with
respect to the slenderness requirements suggested in Reference 3-2, These
requirements ensure that certain fabrication, testing, and assembly processes

may be accomplished without seriously degradirg the properties of the truss.

For a thin-walled tube, the radius of gyration rg of the cross section is

related to the tube radius r by

= 9 (3-12)

Thus, the parameter of interest in Reference 3-2 is

£ /2%
r 4d (3-13)
9
For all designs given in Table 3-1, it can be shown that
L _ 3
a - 235 (3-14)
so that
%— = 665 {3-15)
g9

3.1.2 Requirement 1 - Horizontal Testing

To accommodate standard structural testing of the truss members in the
horizontal position in the Earth's gravitational field, it is shown in

Reference 3-2 that the reguirement on slenderness is
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L 574
r 11/3

(3-16)

for the materials and wall thickness used in Table 3-1. A check of the
designs presented in the table for D = 100, 1,000, and 10,000 m reveals that

all designs fail this requirement.

3.1.3 Requirement 2 - Vertical Testing

This requirement for standard structural testing of the truss members in
the vertical position in the Earth's gravitational field is based on the
criterion that tension load induced by the weight of the member should not
exceed one-tenth of the Euler buckling load of the member. As shown in

Reference 3-2, the corresponding requirement on slenderress is

L. 2100

(3-17)
rg 11/2

Evaluating the designs of Table 3-1 for this requirement, we find that designs
with all three (F/D) values pass this test whei1 D = 100 m, but all fail for
D =1,000 and 1,000 m.

3.1.4 Requirement 3 - Fabrication Tolerances

Assuming a strain variation of Ae = 10-6, we can see from Reference 3-2

that this requirement on slenderness is

H|!°

< 1433 (3-18)

[T ]

All designs pass this test.

3.1.5 Requirement 4 - Built-In Loads Due to Member Length Errors

Assuming a variation in member 1length of oe = 10-5, we find that the

corresponding requirement that the resulting built-in member loads be smaller
than one-tenth the Euler load is (Ref. 3-2)

3-7



= < 414 (3-19)

All designs fail this test, though not by an excessive margin.

3.1.6 Requirement 5 -~ Member Vibration Frequencies

Requiring that the truss members be sufficiently stiff that their
fundamental vibration frequency be at least three times the fundamental
frequency of the assembled truss, we can see from Reference 3-2 that for mp/mS

=2, k=2, and H = § the slenderness requirement is

L
r
9

= 2260 (3-20)

All designs pass this test.

In summary, the proposed truss designs have ac~quate slenderness to
provide a competent realizable structure, but testing the truss members in

Barth's gravity field would likely present some special difficulties.

3.2 DESIGN OF A GEODESIC DOME PARABOLOIDAL REFT.ECTOR

Consider a geodesic dome in the shape of a paraboloid, as shown in Figure
3-2. The geodesic dome behaves in the large as a membrane, and it can be
viewed as the limiting case of a tetrahedral truss as the thickness H is
reduced to zero. It is simpler than the truss since only one surface of
lattice elements is required. On the other hand, the membrane-like surface is
very flexible unless the edge is supported by a stiff ring., Packaging and
deploying the ring may present more difficulties than those presented by the
more nearly uniform tetrahedral truss. The interface with the mesh is again
assumed to be at the lattice nodes, and the structural members carry axial

tension and compression only.

All strength and surface accuracy requirements presented in the previous
section for the tetrahedral truss alsoc apply to the geodesic dome, However,
the unit mass of the dome structure is much lighter than the tetrahedral truss

and is given by (Ref, 3-1, p. 168)
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2
mass _ (“0/3 F.S. Pt (3-21)

1/3
area LE )

Assuming all material properties, strength, and accuracy requirements for
the geodesic dome are identical to those used for the tetrahedral truss
desicns, we obtain the results presented in Table 3-2. Although the unit
masses reported in Table 3-2 for the geodesic dome are much smaller than those
reported in Table 3-1 for the tetrahedral truss, the two figures are not
directly comparable since the geodesic dome structure is not stiff enough to
be useful until a stiff ring is added around the perimeter of the dome. Thus,
the unit mass of the required ring stiffness must be added to the unit mass of
the dome before a direct comparison with the tetrahedral truss can be made.

The design of this ring stiffener is reported in the next section.

3.3 DESIGN OF A RING STIFFENER FOR THE GEODESIC DOME REFLECTOR

Presented in the Appendix is an analysis of the free vibrations of a
shallow spherical membrane dome. 1In particular, the fundamental frequency of
vibration of the dome with a clamped circular edge is obtained. Also obtained
is the first nonzero vibration frequency of a dome whose edge is supported by
a ring stiffener with isotropic bending stiffness EI. The ring stiffener is

assumed to be inextensible,

The design of the ring stiffener is based on the analysis presented in
the Appendix. The philosophy behind the ring design is that the ring should be
stiff enough that the fundamental wvibration frequency of the ring-stiffened
dome is equal to the natural frequency of a dome with clamped eged. Clearly,
any additional ring stiffness is not useful since it cannot further increase
the natural frequency of a stiffened dome. Based on this approach, the

required ring bending stiffness is given by

2 3 m
D EtD°\(3 , Tt _
EL = (E) (256 )(2 * “‘s) (3-22)

where
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a = radius of sphere (approximately 2F)

t = effective thickness of membrane dome

E = moluilus of elasticity of dome and ring
D = reflector diameter

m_ = total mass of ring

m = total mass of dome

The results presented ian Eq. (3-22) for a spherical membrane dome may be

adapted to the paraboloidal geodesic dome truss hy setting

a = 2F (3-23)

and by choosing an effective Et for the truss as (Ref. 3-1)

2 EAs
Et £ = (3-24)
effective /3 [
where
As = cross-sectional area of a dome truss nember
£ = length of a dome truss member (Figure 3-2)

L:c the ring be constructed of three 1longerons in an equilateral
triangular configuration as shown in Figure 3-3. The cross-sectional area of
each longeron is assumed to be A, and the "radius" of the triangular
stiffener cross secticn is R. Then it follows that the ring bending stiffness

is

X

= 3 -
EI = JEAR (3-25)

The mass of the ring stiffener may be estimated as three times the mass of the

longerons. Thus,
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mr = 9‘ltpDAr (3-26)

The mass of the dome may be obtained from Eq. (3-21). Then Egs. (3-21) and
(3-26)give

B) - 6

where the value of (/D) depends on (F/D) as given in Eq. (3-4).

Substitu..ag from Egs. (3-23) through (3-27) into Egq. (3-22) and using
the material properties given in Egs. (3-7), we find the relation between the

required ring cross-sectional radius R and the longeron cross-sectional area Ar

8 - o8 R 1)

Requiring in addition to Eq. (3-28) that the axial stiffness of the ring

is

be ten times the axial stiffness of a dome truss member (in order that the

ring behave in an essentially inextensional manner), we obtain the additional

constraint
A
r _ 1o -
As =3 (3-29)

Finally, substituting from Eq. (3-29) into Egs. (3-27) and (3-28), we

obtain the rim mass and radius.

Presented in Table 3-3 are the resulting design characteristics for the
ring stiffener. Note that in every case, the rim mass is smaller than the

dome mass.

3.4 PARMMETRIC MASS RELATIONS FOR THE TETRAHEDRAL TRUSS AND . ™ODESIC
DOME SUPPORT STRUCTURES

The equations for the unit mass of the tetrahedral truss and geodesic

dome support structures, in terms of the mesh tension, are
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TABLE 3~-2. RING-STIFFENER DESIGNS*
(dome mass not included).

(F/D} /D a,/Ag | my/mg R/D

1/2 0.0176 | 3.33 0.406 | 0.156
1 0.0249 | 3.33 0.575 | 0.0685
2 0.0352 | 3.33 0.813 | 0.0304

*Material parameters: E = 1.1 x 1011 N/m2,
p = 1520 kg/m3, k = 1.5, (wyps/D) = 10-3



2 E /3 3

2 1/3
Mass 44 oKk [(F.S.)t 10 N] (2 . 5) (3-30)
(TD"/4)

for the tetrahedral truss, and

- 2 1/3
4/3 pkK (F.S.)t" 10 N (d only)
Mass - e Y3
—=— . (3-31)
(nD“/4) r 2 31/3 A
43 pkK (F.S.)t 10N x |1+ 473 (&) I} (dome + ring)
E = J D/\A
V3 S
for the dome, where
1.06011; F/D = 1/2
K = 1.01547; F/D =1 (3-32)

1.0035G; F/D =2

and where the truss loading of Eq. (3-1) has been assumed, and also H = . As
discussed in Section 3.3, the area ratio (Ar/As) = 10/3 was assumed in the

design of the ring stiffener for the dome.

If the material properties, wall thickness, factor of safety, and fitting
mass factor values used in Tables 3-1 and 3-2 are used, the unit mass of both
structures may be regarded as dependent upon the assumed mesh tension N
through the relations

124 873, Ep =1/2
-5535—— = {1 w3 Em=1 Tetrahedral Truss (3-33)
(wn?/4) V3

117 873 F/mp =2

39.2 8/3; B =172
—5555—— = {37.6 83 Em=1 Geodesic Dome (3-34)
("D”/4) 1/3 (without ring)

37183, FEmp =2
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55.1 N1/3; F/D = 1/2

‘%‘ = 59.2 Nl/3; F/D = 1 Geodesic Dome (3-35)
(mD"/4) + Ring Stiffener

67.3 83, Em =2

where the unit mass values have units of grams per square meter when the mesh

tension N is expressed in Newtons per square meter.

A plot of these unit masses vs. mesh tension is shown in Figure 3-4.

3.5 DESIGN OF A TRIPOD SUPPORT STRUCTURE

FOR THE PARABOLOTDAL REFLECTOR FEED

In order to complete the truss reflector design, a tripod made of
lightweight columns is required to extend from the rim of the reflector up to
the focal point of the paraboloid, as shown in Pigure 3-5. The three
identical columns are located at points equidistant around the reflector rim,

and each has length L where
2
o F D
(D) = /(-l' (6 - 1—61?) (3-36)

where D is the diameter of the reflector rim, and F is the focal distance of

the paraboloidal reflector.

Let each column of the tripod be made from three identical longerons
arranged to form an equilateral triangle in cross section. Furthermore, let
this triangle be sized such that the longerons will intersect the reflector
truss at three adjacent joints on the reflector surface, as shown in Figure
3-6. Thus, the required batten length £ is the same as the length of the
truss mwembers which form the equilateral triangular facets on the reflective

surface of the truss.

Also, let the column longerons be composed of equal bays of the same
length . Then the column may be composed entirely of members identical to
those used to form the reflective surface of the truss, except for the cross
bracing necessary to provide shear strength. The cross bracing will be
assumed to consist of pretensicned fibers not capable of sustaining
compression and therefore will be extremely lightweight in comparison with the

compression members in the column.
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Figure 3-4. Unit mass vs. mesh tension for truss support
structures (not including mesh itself), solid
tube designs (t = 0.35 mm, graphite/epoxy). 108a
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Figure 3-6. Tripod column/reflector surface interface. 1094



Choosing c¢olumn compression members with 1length, diameter, wall
thickness, and material properties identical to those used for truss members
in the reflector surface, the strength and flexibility coefficients of the
resulting tripod are presented in Table 3-4. The buckling loads presented in
Table 3-4 are for axially loaded individual columns, while the flexibility

coefficients are for a complete tripod assembly assuming a rigid reflector.

The mass of the tripod may be determined from

Mass L d
——} = 144 kpt (——) (——) (3-37)
(1102/4) D/ \D

where k is a factor intended to account for added masses from joint fittings
and diagonal bracing. PFor the tripod masses presented in the table, k was

assumed to be 2.

3.6 DESIGN OF A PARABOLOIDAL TETRAHEDRAL TRUSS REFLECTOR

WITH INFLATED STROUTS

Since the total spacecraft unit mass in the tetrahedral truss
configuration is quite large in comparison with available alternative
configurations, an investigation of the effect on the unit mass of considering
inflated truss members instead of solid tubes was performed. In this
investigation, the column compression loads P and lengths % were chosen from
Table 3-1 to be identical to those used in the solid tube design. The
inflated strut design was assumed to be a circular cylinder with fixed gauge-
th'kness of t = 1 mil = 2.45 x 10 > m, and material of axial E£iber-
reinforced mylar skin. The pressurant was assumed to be N2 at 300 K. The

buckling strength is proportional to the modulus of elasticity of the graphite

s N/mz. The mass density of the

fibers, which was assumed to be 2.21 x 10
mylar skin was taken as pg = 2080 kg/mz, while that for the fibers was Pe =
1750 kg/mz. A factor of safety against Euler buckling of the struts was

chosen as 2, as was the fitting mass factor.
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Under these assumptions, the reflector-orly unit masses were found to be
approximately 130 gm/m2 for all three considered (F/D) values for the geodesic
dome configuration and approximately 400 gm/m2 for the tetrahedral truss
configuration. Since these unit masses are much larger than those reported in
Tables 3-1 and 3-2 for solid tube designs, no further consideration was given

to the inflated strut concept.
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SECTION 4
MASS SUMMARY AND COMPARISON OF DESIGNS

Presented in this section is a summary of the unit masses for
paraboloidal reflector structures obtained by three very different design
approaches. These approaches include (1) An entirely inflated membrane
configuration, (2) a spin-stiffened configuration, and (3) A truss-supported
configuration. The spin-stiffened and truss-supported configurations are
described in more detail in Sections 2 and 3 of this report whereas the
entirely inflated configuration ic described in a previous report (Ref. 4-1)

and is described briefly in what follows.

Also presented herein is a discussion and comparison of the strengths and

weaknesses of the three basic design configurations.

4.1 MASS SUMMARY FOR AN INFLATED REFLECTOR SPACECRAFT

Consider an inflated paraboloidal reflector consisting basically of a
paraboloidal membrane surface joined at its outer rim to a conical membrane
surface as shown in Figure 4-1. The conical membrane is assumed to be
transparent to the radiation of interest while the paraboloid is coated with a
reflective material. As discussed in Reference 4-1, the tension fields
induced in the membrane surfaces due to internal pressurization and the abrupt
change in direction of these tension forces at the rim (cone/paraboloid
junction) necessitate special attention to load transfer at the rim.
Specifically, to avoid the development of substantial wrinkle regions in the
paratoloid near the rim, a separate compression-carrying rim structural
component is necessary. For the design developed in Refzrence 4-1, this
compression rim was considered to be a segmented ring composed of many shc:t
segments, each of which is straight. Furthermore, each rim segment was
assumed to be a separately inflated (noncylindrical) isotensoid column as
shown in Figure 4-2 and discussed in Reference 4-1. Attachment between the
rim and membrane surfaces occurs only at the junctions between straight rim
segments as shown in Figure 4-3, Load transfer between the membrane surfaces

and rim is provided by a scalloped arrangement of arched edge tendons which
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are bcnded directly to the edge of the membrane and made of the same material.
Leakage of pressurant at the rim is prevented by a (nonstructural) billowing
bladder.

The design of this inflated configuration was governed by setting the
maximum edge loading in the membrane surfaces equal to an arbitrarily chosen
predetermined value of 20 N/m, corresponding to a maximum working stress of
lx 107 N/m2 in a membrane of thickness 2 x 10-6 m. FPor a material of Kapton
polymer film, the working stress is well below the ultimate strength of the
material, but prolonged loading at higher stress levels may cause significant

creep.

As a result of setting the maximum edge tension to a predetermined value
under static pressurization, the necessary internal pressure and variation in
membrane st.esses over the surface may be obtained. It is found that the
maximum membrane stress always occurs near the reflector rim and that the
mmbrane stresses near the apex of the cone (feed of the paraboloid) are
always zero regardless of the amount of internal pressure used. The pressurant

was assumed to be N2 at 00 K.

Next, the forces in the arched edge tendons wer: determined from an
assumed circular arc geometry of the tendons. From these edge tendon forces,
the compression force carried by each rim segment was inferred. The edge
tendons are sized by assuming that they are made of the same material as the
membrane and that they have the same working stress. The rim scgments are
designed on the basis of an analysis of the buckling load of individuai rim
segments, assuming a safety factor of two and ignoring the effects of initial
imperfections in the column. The pressurant used in the inflated isotensoid
column segments is Nz gas at 300 K. The column reinforcing material was chosen
as Kevlar 49 fiber wicth densit:ypf = 1360 kg/m3 and working stress of;;t = 6.9
p 108 N/mz.

The mass of each major structural component of the inflated reflector
spacecraft is reviewed in the following paragraphs, and for the particular

(F/D) values chosen, numerical results are presented in Table 4-1.
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TABLE 4-1.

COMPARISON OF STRUCTURAL MASSES OF THREE PARABOLOIDAL
REFLECTOR SPACECRAFT CONFIGURATIONS.

CONFIGURATION AND COMPONENT

MASS/(WD2/4), g/m2

F/D=1/2 F/D = 1 F/D = 2
Inflated Configuration
Membrane 9.53 12.8 20.4
Pressurant 0.0505 0.0706 0.0737
Deep-arc tendons 0.514 0.527 0.488
Inflated isotensoid rim 2.06 2.06 2.06
Total 12.2 15.5 23.0
Spinning Configuration
Membrane 4.24 4.06 4.02
Outer rim mass 0.298 0.200 0.181
Front and back stays 0.00746 0.00596 0.00568
Inflated center column 0.169 0.550 3.53
Total 4.71 4.82 7.74
Total with control-designed column 5.12 5.91 14.01
Truss Configuration
Tetrahedral truss 124 119 117
Mesh/membrane 4.24 4.06 4.02
Tripod 6.14 11.1 25.4
Total 134 134 146
Geodesic dome 39.3 37.7 37.1
Ring stiffener 16.0 21.7 30.2
Mesh/membrane 4.24 4.06 4.02
Tripod 5.14 11.1 25.4
Total 65.7 74.6 96.7




4.1.1 MNMembrane

The membrane mass is the product of the total surface area of membrane

material, the membrane thickness, and the mass density. Thus,

M‘membtane PtA (4~1)
where

A = membrane surface area, (~02)

P = mass density

t = membrane thickness

Por the results presented in Table 4-1, p= 2 x 103 kg/m3 and t = 2 x 10-6 m.

The term A is a function of (F/D) as given in Eq. (2-5) of Reference 4-1l.

4.1.2 Pressurant

The pressurant mass is the product of the mass density p of the
pressurant and the total volume of pressurant. However, for N2 at 300 K, the
mass density is proportional to the pressure which, in this design, is

proportional to the maximum allowable edge tension Tmax in the membrane. Thus,

2
= v -
u‘pressurant ov Tmax D (4-2)
where
Thax = maximum allowable edge tension
v = volume of pressurant, ~D3

For the results presented in Table 4-1, Tmax = 20 N/m. The terms V and p are
functions of (F/D) through Eqs. (2-7), (2-8), (2-16), and (2~17) of Reference
4-1 .
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4.1.3 Deep-Arc Tendons

The tendon mass is the product of the mass density p, the total tendon
length L, and the cross-sectional area A. However, the required cross-
sectional area for a given workirg stress ¢ may be related back to the

allowable edge tension Tmax' Thus, it may be shown that

Tmaxnzp
utendons [+] (4-3)
where
Tmax = maximum allowable edge tension
g = working stress in tendons
1] = mass density of tendons

The mass is also dependent on the ratio (F/D) through Eqs. (2-20), (2-27), (2-
28), (2-7), and others. For the results presented in Table 4-1, p = 2 x 103

3
kg/m”, Tmax =20 N/m, and 0 = 1 x 107 N/m.

4.1.4 Inflated Rim

The mass of the inflated rim is the product of the overall mass density
of the wa'l and pressurant of column material and the voluine occupied by the
inflated rim as given in Eq. (2-61) of Reference 4-1. The parameters are not
involved in a simple manner, and no attempt will be made here to parameterize

these results, except that

2
. O -
erm PD TmaxD (4-4)
where
T x = maximum allowable edge tension

The value of '1'max used to obtain the results presented in Table 4-1 is 20 N/m.
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4.1.5 Strenqgths and Weaknesses of the Design

Compared with the other configurations, it is seen that the inflated
spacecraft is much lighter than the truss spacecraft but not as light as the
spinning spacecraft. The inflated spacecraft has the potential advantage of an
obvious and reliable deploymen: mechanism and a potentially high packaging

efficiency.

Potential disadvantages of the inflated configuration include leakage of
pressurant and susceptibility to meteoroid puncture, inherently low stiffness
of the membrane wall near the apex (feed) of the cone, and potentially large

errors in surface accuracy.

4.2 MASS SUMMARY OF A SPDNNING REFLECTOR SPACECRAFT

A detailed discussion of the design procedures used to develop the
dimensions and masses of spacecraft structural components for the spinning
configuration are given in Section 2 of this report. Consequently, what
follows is a review of the parameters which affect the mass of each major
structural component. Numerical values are presented in Table 4-1 for

comparison with other configurations.

4.2.1 Membrane

The mass of the membrane surface is the product of the mass density p,

the membrane thickness t, and the surface A. Thus,

Hmembrane pEA (4-53)

For the results presented in Table 4-1, p = 2 x 103 kg/m3, t=22x 10-6 m, and

A is the sum of paraboloidal and conical areas which depend on (F/D).

4.2.2 Outer-Rim Mass

The mass of the outer rir. is the product of the circumference 7tD of the

rim and the lineal mass density m of the added rim mass. Thus,

~

Mouter rim = mmd (4-6)
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From Eqs. (2-21) through (2-24), we find that

m s N = D/2) /w* (4-7)

However, N¢ and mz are not conveniently parameterized. It may be shown that

) -
Mouter rim Ne + N f (4-8)

where
N = arbitrarily chosen maximum N,Z at r = 0.2 D
Opax ¢
“e X = arbitrarily chosen minimum N, at r = 0.2 D
nin ]
p = mass density of membrane
t = membrane thickness
-1
£ = function of (/D) = [1 + (D/10 r)z]
Por the results presented in Table 4-1, N = 5 N/m, N = 0.85 N/m, p =

3 3 -6 Omax Omin
2 x10" kg/m™, and t = 2 x 10 " m.

4.2.3 Pront and Back Stays

The mass of the front and back stays may be characterized as

pN
¢max

Mstays o] (4-9)

where
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p = mass density of stays

g = working stress of stays
N = arbitrarily chosen maximum N, at r = 0.2 D
Prax ¢
Por the results presented in Table 4-1, N = 5 N/m, p = 1380 kg/m3, and © =

x
6.9 x 108 N/m2 for a stay material of Kevlar 49.

4.2.4 Inflated Center Column

The mass of the inflated center column is given by Eq. (2-34). It is not
easily parameterized since it is dependent upon numerical solutions to a cubic

equation for the required column radius r.

4.2.5 Strenqgths and Weaknesses of the Design

From Table 4-1, it is observed that the spinning configuration is
significantly lighter than any of the competing configurations. hnother
potential advantage is that the centrifugal force may be used in a reliable

deployment mechanism.,

The spinning configuraticon presents a number of potential disadvantages
which are inherent by products of rot:tional motion. First of all, the
angular momentum of a large rotating spacecraft is quite large and provides an
impediment to maneuvers which require significant motion of the axis. As
previously discussed, it may be necessary to add a large counter-rotating
flywheel to cancel the spacecraft angular momentum and provide a means for
attituae control, However, such a flywheel would amplify whirl instability
considerations in the design of the central column, resulting in larger total
spacecraft mass, as shown in Table 4-1, under the heading "total with control-
designed column.” In addition to angular momentum effects, the spacecraft
must be dynamically balanced by adding masses in appropriate locations in
order that the spin axis becomes the principle axis of inertia. As previously
shown, the designs presented in Table i-1 have not been dynamically balanced,
and therefore additional masses will be required. Finally, the spinning
configuration provides an opportunity for a plethora of dynamic instabilities

which should be investigated.
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4.3 MASS SUMMARY FOR A TRUSS REFLECTOR SPACECRAFT

A detailed discussion of the design procedures used to develop the
dimensions and masses of spacecraft structural components for the truss
confiqurations are given in Section 3 of this report. Consequently, what
follows is a review of the parameters which affect the mass of each major
structural component. Numerical values are presented in Table 4-1 for

comparison with other configurations.

4.3.1 Tetrahedral Truss

The mass of the deep tetrahedral truss may be characterized as

2 1/3 .2/3 _-1/3
M D -
tetra D" N t E (4-10)
where
P = mass density of truss member material
N = edge tension in mesh supported by truss
t = wall thickness of truss members
E = modulus of elasticity of truss members

For the results presented in Table 4-1, p = 1520 kg/m3, E=1.1x 10]‘1 N/m2

for graphite/epoxy material, t = 0.35 mm, and N = 1 N.

4.3.2 Geodesic Dome

The mass of the simple geodesic dome may also be characterized by Eq.

4.3.3 Ring Stiffener

The mass of the ring stiffener for the geodesic dome may be characterized

as

W
rms pD2 N1/3 t2/3 E 1/3

M N -
ring D (4-11)
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where p, N, t, and E are as described above, and ¥oms is the allowable facet-

flattening error in the reflective surface. For the results presented in

-5
Table 4-1, wms/D =10 ~.

4.3.4 Mesh/Membrane

The mass of the mesh or membrane reflective surface supported by the
truss may be characterized as
M + m'D2 (4-12)
mesh
where m' is the mass per unit area of the mesh material. For the results

presented in Table 4-1, m' = 4 g/mz.

4.3.5 Tripod
The mass of the tripod may be characterized as
Yrms
:: - N1/3 t-1/3 E—1/3 ) (4-13)

tripod

where N, t, E and (wms/D) are as described above. The values for these

quantities which were used in constructing Table 4-1 are also presented above.

4.3.6 Strengths and Weaknesses of the Design

Both of the truss confiqurations are substantially heavier than the other
two competing designs. Furthermore, the packaging efficiency and deployment
procedures for each are not 1likely to be as favorable as those for the
competing designs. However, the tetrahedral truss has a significant advantage
in that precision design and fabrication procedures provide the opportunity
for a relatively high surface accuracy. It may be that the dome structure is
capable of a surface accuracy below that of the tetrahedral truss but above

that of the other two competing designs.
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APPENDIX
VIBRATIONS OF A SHALLOW DOME

For a -shallow spherical come (r = ad) we can ignore the effects of in-surface

acceleration loads. We get

T r0 r g _
T + r 236 + r =0

3f Jr
N + N = maw w
r 6
Rewriting gives
Et du ., u 1 9v 2w)
+ - —_— - = =X =2
Nr NG (1-v) ( ¥ T + rd + a

r 8 1+v or r r 3B
. Et l1du, odv _v
Yo 2(1+v) (r 38 tar )

The first two of the equilibrium equations are satisfied by relating the

stresses to the stress potential ¢, where

130 1 3%
N = -T3w% T I 2
r r° 99
N = _ﬁ
;) 2e2
N = 2 (J.EQ
0 3r \r 090



Manipulating

2(u) o v (13

v (?) ~ TEt [r ar (Nr N
(v) - v (2N 1

r Et r or 2

where

2 2

Vo gy

ot T r‘ 30

is the usual Laplacian.

Taking the Laplacian of the first of the

1-y 2 S G2
Et v (Nr + NO) - Et
Thus

2 a _
v [W——E—t'(Nr+Ne)] = 0

o2 Do

6 2 af
r

]

35 Ne)]

2
v (Nr + NG) +

[N
[N

the second and third stress-displacement relatious yields

stress-displacement relations gives

Substituting from the third equilibrium equation finally gives

22
ma_w

Et

) Vzw = 0

(i -

Either

or



If we require w = 0 at the beundary r = D/2, then nc nontrivial solution
exists with a zero Lapracian. Therefore, for supported edges, u shallow

spherical (or paraboloidal) dome would exhi'it many vibration modes, all having

the same vibration frequency.

If the rim is allowed to distort, then other frequencies are possible. We
would like to determine how stiff the rim-reinforcing ring must be in order to

ensui12 that tre other frequencies are higher than the basic one above.
Let the deform~tion be sinusoidal around the circumference; that is
w = w_cos nb
n
and so forth.

The nonsingular solution with a zerc Laplacian is

In terms of the stress potential, the third equilibrium equation gives

n
V24> = -mawzw(%) cos nb

The general solution is

2 n+2 ; 2
2r\" _ maww (g;) (2 )
% ;F(——D) T %D \ D 3) | cos n0

The stresses are

2z
L}

n-2 n
[.n(n -1) é%-(%;) - n-2 mawzw (ZE) cos nb

r D 4 D
0 7
4F (2e\™°  ne2 2 (Zr)“
Ne = [—n(n - 1) D2 (7;) + 5 maw W 5/ | cos nb



Nre = -n [(n - 1) >

D D

4F (2:)“‘2 _

2

4

Ju W

_— = £ - =

or r a

Therefore
W, N -oNg
or d Et
-2

ALY 4F (2r) ®
= 7 - D o2 \D)

2

_ [(va)rzl(l-v) mazm

Et

NH

maw W (35

D

2r

D

n
) sin nb

With regard to the u andé v displacements, note that

n
) cos nb

integrating, and noting that 1(2,3) = 0 for 2141, gives

T 2(n+l) 4
Similarly
%6 = =-u-r §-+ T Ne;:Nr
<o
sy o z;)"“
v .- I T TEe "D ( D

: 20
D [(l+ﬂ)n+4 ma w

2{(n+ 4

.

£t

D (1+V) n-2(1-V) naw?
Et



Inasmuch as we are dealing with a membrane, we

-

canict expect to enforce

compatibility of edge deflections normal to the membrane.

We must, however,

require that the u and v deflections match tnose of a supporting ring.

Let the u and v displacements at r = D/2 be

u = U cos nf
v = V sin nf
The
say o D le2a-v mi? | W
2(n+1) 4 Et a
Thus
W (ntl)a U+v
D z2 2
3-vmaw _ 1
4 Et
Snlving for F gives
. 22
4F - Et|U-V n+l U+V ma w
2 rtD | 1+vy 4 2 2 Et
D 3-v ma"w 1
4 Et
The resulting edge stresses are
N = Et | {n-1) (T - V) + n+l U+V mazu)2
T D 1+v 4 22 Et
3vmaw _,
L 4 Et »
— I
N Et | (n-1) n+l mazu)2 U+vVv
= Flwm VU TR 7 2
3-v ma“w 1
L 4 Et -

cos n9

sin nf



Let us write these in terms of radial, circumferential, and vertical

coordinates ul, uz, and u..

3
— D
ul = U+£W
;2 = v
- D .
u3 = —2—3'U+\J
— D --
U= y-333
\ =IIZ
Then
Y Ee p_—l(; _c .0 o) ,mimaty’ *1™2 7
cos nb D | 1+v 1 2 2a U3 4 Et
3—\)mau)_1
L 4 Et
Neo _ Et} n—l( 3 -5 - JQ‘;») 4 ol mazw2 Ut e Y3
sin nf D 14+v 1 2 2a 3 4 Et 22
3-v ma w 1
L 4 Et

Ring Stiffness Equations

If we ignore torsion, the equations governing the deformations of an

unpreloaded ring are taken from Reference 1-2 to be

Au = E
where
i
u = II?
u.
31



4E1 4EL
1nl‘+}':'.15x ln + EAn
2 2
D
4E1 4E1
A = j% 21 n3 + EAn 21 n2 + EAn2
D D
0 0
D
-—-—-Nr(—2-)+ Wt o
cos nd R 1
D
- _ _ Nre( ) w 3
P sin no mR 2
D 2 —
'ZZN( )'”“R‘*’ Uy
cos nb
Combining the first two gives
4E1 4EI
1,4 2 1,3 _
(n ~n") (n” - n) 1] u
) ) 1
2 EA(n" - 1) EA (n” - n) ] 62
4EI
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0 0 5
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or

4E1 nN N .
1 & 2 - = r ré T
D2 (@ -n9) 0 0 nul+u2 —m+sin n9+an (““1-\"2)
A 2 - — Nr nNtG 2 — -
o2 0 EAG™ - 1) Of fur*my Cos 0ot Sinnd T TR (““2 - "1)
4E1 Dy (2)
2 4 — 2a r\2 2 —
0 0 2 s e ng T oY Yy
Let
x1 = nu1 + u2
x, = u + nu,
Then
- .M n
1 n2 -1
; _ x1 + nx2
2 n2 -1
Also
N X, =X 2 2 x +x—(n+1)£3
r =Et__12_n—1_1}_6+maw 1 2 2a 3
cos nb D 1+v 1-v 2a "3 4Et 22
3-vmaw -1
4 Et J
D —
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Mo _Ee| M2 n1p - omalw’ ¥t e T (D g5
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“vmawo
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2 n —
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P

ORICRS A0 1 i ,:

OF POOR fo .+t

g

Nr Nre Et | n+l
= = ———-(x1 -x

cos n8 " sin n8 D |1+v 2) T 1 2a u3

2 D —
mazmz -(n—l)(x1+x2)+ (r -1) 52 Y

3
Et 22
3-v maw

4 Et

+

-1

In order to simplify, let EA be very large so that the second equation
yields x, = 0. Also let EI, = EI, = EI and v = 1/3. Then

1 2
B | 22 i
2\ 4 2 20 2 1 Etyp 2 3\1- B
n t
(B) Bl - n) - S me’ ! -7;(2;)(n - g X 0
n -1 ! [‘_§mau
3 Ec
22
ma W
Et 3(a+l) - (3n+l) Et
+ EC
D 2 2
“_gmau
3 Et
‘ =
31-‘““2“’2) (3)[‘ Eln® - m o’
Ca () N p) E - me _
D 12 8mazw2 22 ! 0
4-3 Tg 2 m &
. EE,(EL) 3(n-1) - (3n-1) "Et
D \Za 22
4_§mau)
— 3 Et -

Expanding the determinant gives the condition for nontrivial soiution.
This would allow the determination of the required ring stiffness to produce a
Jesired frequency. Of course, we want to find the ring stiffness for which the
frequency is the same as the fixed-edge value. Therefore, wve set

2 - Et
2

ma

The result is

(z\“mﬁ I S (1)2 E_
D/ 2 2
ma
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The highest stiffness arises from n=2. Solving gives, finally
g - (2V ED (3, ™R
2a 256 12 MS

where MR and MS are the masses of the ring and the surface, respectively.

A-17



